Roles of intracellular hydrogen peroxide accumulation in abscisic acid signaling in Arabidopsis guard cells.
نویسندگان
چکیده
Reactive oxygen species (ROS), including hydrogen peroxide (H(2)O(2)), are among the important second messengers in abscisic acid (ABA) signaling in guard cells. In this study, to investigate specific roles of H(2)O(2) in ABA signaling in guard cells, we examined the effects of mutations in the guard cell-expressed catalase (CAT) genes, CAT1 and CAT3, and of the CAT inhibitor 3-aminotriazole (AT) on stomatal movement. The cat3 and cat1 cat3 mutations significantly reduced CAT activities, leading to higher basal level of H(2)O(2) in guard cells, when assessed by 2',7'-dichlorodihydrofluorescein, whereas they did not affect stomatal aperture size under non-stressed condition. In addition, AT-treatment at concentrations that abolish CAT activities, showed trivial affect on stomatal aperture size, while basal H(2)O(2) level increased extensively. In contrast, cat mutations and AT-treatment potentiated ABA-induced stomatal closure. Inducible ROS production triggered by ABA was observed in these mutants and wild type as well as in AT-treated guard cells. These results suggest that ABA-inducible cytosolic H(2)O(2) elevation functions in ABA-induced stomatal closure, while constitutive increase of H(2)O(2) do not cause stomatal closure.
منابع مشابه
Regulation of reactive oxygen species-mediated abscisic acid signaling in guard cells and drought tolerance by glutathione
The phytohormone abscisic acid (ABA) induces stomatal closure in response to drought stress, leading to reduction of transpirational water loss. A thiol tripeptide glutathione (GSH) is an important regulator of cellular redox homeostasis in plants. Although it has been shown that cellular redox state of guard cells controls ABA-mediated stomatal closure, roles of GSH in guard cell ABA signaling...
متن کاملA plasma membrane receptor kinase, GHR1, mediates abscisic acid- and hydrogen peroxide-regulated stomatal movement in Arabidopsis.
The plant hormone abscisic acid (ABA) regulates stomatal movement under drought stress, and this regulation requires hydrogen peroxide (H2O2). We isolated GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), which encodes a receptor-like kinase localized on the plasma membrane in Arabidopsis thaliana. ghr1 mutants were defective ABA and H2O2 induction of stomatal closure. Genetic analysis indicates ...
متن کاملAquaporins facilitate hydrogen peroxide entry into guard cells to mediate ABA- and pathogen-triggered stomatal closure.
Stomatal movements are crucial for the control of plant water status and protection against pathogens. Assays on epidermal peels revealed that, similar to abscisic acid (ABA), pathogen-associated molecular pattern (PAMP) flg22 requires the AtPIP2;1 aquaporin to induce stomatal closure. Flg22 also induced an increase in osmotic water permeability (Pf) of guard cell protoplasts through activation...
متن کاملArabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought StressOPEN
Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)and Ca2+-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plants, w...
متن کاملArabidopsis CALCIUM-DEPENDENT PROTEIN KINASE8 and CATALASE3 Function in Abscisic Acid-Mediated Signaling and H2O2 Homeostasis in Stomatal Guard Cells under Drought Stress.
Drought is a major threat to plant growth and crop productivity. Calcium-dependent protein kinases (CDPKs, CPKs) are believed to play important roles in plant responses to drought stress. Here, we report that Arabidopsis thaliana CPK8 functions in abscisic acid (ABA)- and Ca(2+)-mediated plant responses to drought stress. The cpk8 mutant was more sensitive to drought stress than wild-type plant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of plant physiology
دوره 168 16 شماره
صفحات -
تاریخ انتشار 2011